If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2-55x-7=0
a = 72; b = -55; c = -7;
Δ = b2-4ac
Δ = -552-4·72·(-7)
Δ = 5041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5041}=71$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-71}{2*72}=\frac{-16}{144} =-1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+71}{2*72}=\frac{126}{144} =7/8 $
| 19=h/3=-8 | | 1/44r-8)=r2 | | 19=h/3=8 | | 4*2^x=12 | | 6-6x=5-9x-2 | | -5+x=-2x+4 | | 82=5x+12 | | 51/6x+21/4=10 | | -4x-x+1=11-3x | | x^2+24x+11=0 | | 4k-9k=90 | | 3w=8/2=25 | | 7/10(f)=49 | | 3y-4=2y+8-5y | | x(3+x)=1120 | | x^2−16x+100=0 | | 17=-13x-8x | | 9.35/2=t | | x+31/3=81/2 | | 5x=5x-3 | | d(d+2)=1120 | | F(a)+9=6(a)+9+7 | | 1/2(6a+8)=16 | | 11.50-1.50=t | | x(x+2)=55 | | 20x+7-3=13x+19 | | (4-4+5)x=25 | | 3(g-7)=+g=3 | | 94-4+5)x=25 | | 3.14=9420y | | x=15+(1/4*x) | | 4(x-2)+2=2(2x-4)+2 |